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Abstract

This paper provides a method for obtaining the mixed-mode stress intensity factors for a bi-material interface crack
in the infinite strip configuration and in the case where both phases are fully anisotropic. First, the dislocation solution
in a bi-material anisotropic infinite strip is investigated (the boundary of the strip is parallel to the bi-material interface).
A surface distributed dislocation approach is employed to ensure the traction-free conditions at the strip bounding
surfaces. Subsequently, the derived dislocation solution is applied to calculate the mixed-mode stress intensity factors of
a crack located at, or parallel to, the interface in the bi-material anisotropic infinite strip. The crack itself is modelled as
a distribution of the derived dislocation solutions for the strip. Results are presented and the effects of material mis-
match, the length of the crack and the material interface on the stress intensity factors are investigated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Anisotropic bi-materials are often encountered in modern technology with the increasing use of com-
posite and sandwich material systems. The fracture behavior at the interface between these dissimilar
materials (namely the different layers of the composite) is a critical phenomenon and frequently the weak
link in the safe and confident use of these modern materials. Determining the stress intensity factors of
interface cracks in anisotropic bi-materials is the first step in predicting the subsequent crack propagation
and damage tolerance. One important point is that the construction with these composite and sandwich
systems typically involves the configuration of more or less thin “strip” geometry, therefore the commonly
encountered in the literature formulations and results on infinite plane or half-plane configurations would
not normally be applicable.

One of the most effective methods in anisotropic fracture mechanics is the distributed dislocation tech-
nique, which is a semi-analytical technique and has been already effectively used by Huang and Kardomateas
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(1999, 2001). The basic idea of this method is to model the crack as an array of dislocations along the crack
line and determine the dislocation densities by satisfying the crack surface traction free conditions. The
mixed-mode stress intensity factors can subsequently be calculated from the dislocation densities.

The cornerstone of this method is the fundamental solution of a dislocation in the corresponding
configuration. Eshelby et al. (1953) and Stroh (1958) are among the pioneers who presented analytical
solutions for a dislocation in general anisotropic materials. Following their work, Ting (1986), and Qu and
Li (1991) studied the classical problem of a dislocation situated at the interface between two anisotropic
elastic half planes and obtained an analytical solution to the dislocation problem. Atkinson and Eftaxio-
poulos (1991) also achieved the solution for a dislocation in an anisotropic half plane and a bi-material
infinite plane, using the basic formulation of Stroh. Bi-material half-planes with a crack located at or
parallel to the interface have been studied by Huang and Kardomateas (2001) by use of the distributed
dislocation technique.

As far as the strip geometry, Civelek and Erdogan (1982) developed a numerical method to calculate the
dislocation solution in an isotropic homogeneous infinite strip by superposing the infinite plane with an
additional elastic field, which is expressed by an Airy stress function with Fourier transformation. Suo
(1990) and Suo and Hutchinson (1990) extended this method to orthotropic materials and calculated the
mixed-mode stress intensity factors for an infinite strip with semi-infinite cracks subjected to edge bending.
Their technique, undoubtedly quite elegant, is limited to orthotropic materials. Huang and Kardomateas
(1999) developed a method to calculate the stress fields of a dislocation in a homogeneous anisotropic
infinite strip and applied the solution to calculate the stress intensity factors for both single edge and double
edge cracks in a fully anisotropic homogeneous infinite strip. But analytical studies of the fully anisotropic
bi-material strip cannot be found in the literature, short of finite element results associated with interla-
minar cracks in composite laminates (Qian and Sun, 1997).

In this paper, first the analytical solution for a dislocation in an anisotropic bi-material infinite plane is
summarized and then the stress field for a dislocation in an anisotropic bi-material strip is obtained by
distributing two dislocation arrays along the traction-free boundaries of the infinite strip. The dislocation
solution for the strip thus derived, is then applied to calculate the mixed mode stress intensity factors for a
crack located at, or parallel to, the interface of the bi-material anisotropic infinite strip. This last step
involves modelling the crack itself as a distribution of the derived dislocation solutions for the strip.

2. Formulation
2.1. Dislocation solution in a bi-material anisotropic infinite plane

The analytical solution for dislocations in a bi-material infinite plane has several different versions.
Almost all of them originate from Stroh’s formulation. Combining the solutions presented by Ting (1986),
Qu and Li (1991), and Atkinson and Eftaxiopoulos (1991), we present first a concise summary of this
elegant analytical solution for a dislocation in a bi-material infinite plane.

In a homogenous anisotropic medium, the constitutives are:

oU;
oip = Gy 3 (1)
where 7, j,k,/ = 1,2,3 and the Einstein indices convention applies. C;y; is the elastic stiffness tensor and it
SatisﬁeS: Cijkl = Cfik/; C{jk} = Cijlk-
The equilibrium equations can be written as

60',-/- azUk
— = Cy——— =0, 2
o Moy )
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which are the partial differential equations governing the stress field of the homogeneous anisotropic
medium.
We can assume the displacement field in the following form, which satisfies Eq. (2):

Ue = Aif (x1 + Pxa), 3)
provided that the constant A, satisfies the equations:

(Ciig + PCiiga + PCiot + P*Ciia) Ay = 0. 4)
Ay # 0 can be found if P is a root of the sextic equation (the determinant of the coefficients of (4)):

| itk + PCitgr + PCiog1 + P*Cigr |= 0. (5)
Then the displacements can be written as

Ue = > Aufulz) + Y Awfo(z), (6)
where

z,=x1+Pxy a=1273. (7)

If ¢, is a function of x; and x, and the stresses:
0o, 0o,
i1 = - l; 2 = l? 8

on 6x2 o 6x1 ( )
then, because the stresses should satisfy the equilibrium Eq. (3), from Egs. (1), (7) and (8), we obtain:

¢; = Zwaa(ZW-) + szﬂ(za)- (9)
Then the stress components can be expressed as

on == LuPufi(z) = Y _ LuPif(Z,), (10)

Op = ZLiasz:(Za) + Ziimﬂ(za)a (11)

where L;, is defined by
Ly = (Cox1 + P,Ciua) A (12)

All of the above relations are for an anisotropic medium. If there is a single dislocation b = {b, b, b3}
located at zy(x9,x20) in the medium, as we require that the stress components at the point of the dislocation
be singular, we can choose a function:

1
flzs) = My 20, "
where
Zoy = X10 + Pyx20, (14)
b; = By;d;, "
y o
B’j = 51 Z(A,-,(M(xj - AiaMatj)a (16)

My;Lig = Oap. (17)
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Then the displacements are given by

Ui = Z 4"“M d;In(z, — zo,) +Z 4"“M d; In(z, — Zo,), (18)
and the stresses are given by
1 d: o d.
i1 = — LiyP,M,; : Li,P.M,; ! ; 19
R I PINITELERS > _} 09)

1
Op = In { ZX:LMM + ZLzoc . } (20)

For the anisotropic bi-material infinite plane, as shown in Fig. 1, there is a single dislocation
b= {bl,bz,b3}T located in one of the homogeneous anisotropic media; here we assume it is located in
medium (1). On the interface of the bi-materials, the tractions and displacements should be continuous i.e.:

Zy — Z0a

U () = U (1), (21)
oy (n) = (x1). (22)
Since for the homogeneous anisotropic medium (1) we require £V (z\)) to be singular at z{!) = Zola when
x; > 0, and for the medium (2), we require f )(z2)) to have no smgulanty when x, < 0, we can choose:
1
fofl) (ZL(XU) = EMS-)d}I) In (ZS) — Zoa ZE”“ In ( — Zoﬁ) (23)

z 2 Z Ggy In ( — 20/3> (24)

where E;, and Gy, are constants depending on the elastic properties of medium (1) and medium (2).
Speciﬁcally, from Egs. (21) and (22), we obtain:

2
k/i /f, + Z Akac Elfx Z Al(cx> Gpa, (25)

/\\/

| (x40,%20)

®
—

Fig. 1. Dislocation in a bi-material infinite plane.
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LymdY + Z LYEs =Y LY Gy (26)

From Egs. (25) and (26) we can determine Eg, and Gg,, then the displacements and stresses are deter-
mined.
The stress components in medium (1) are written as

1 1 1 50 1 !
o1 = ] SR o () 4 ()
o

} +C.C. (27)

1 1 1) 5401 1 -
oo o] Sa et (0 -4) "+ (e - 4)
o

where C.C. means complex conjugate.
We assume that the medium (1) and (2) are linear elastic anisotropic materials, therefore we can express
the stress components at z = x; + ix, due to a single dislocation b = {by, b,, b3}T at zo(x19,x20) as

} +C.C. (28)

sz(xlaxz,xlo,xzo) = Fij(xl7x2,X10,Xzo)b(x10,xzo), (29)
where

Fij(xlaxz,x107x20) = [flij(xl,xz,xloaxzo),fzij(xl,xz,xm,xzo),ﬁij(xl7X2,x10,x20)}> (30)

b(x107xzo) = {bl(x107x20)7bz(x107x20)7bS(XIOax20)}T~ (31)

The physical meaning of fy;;(x1,x2,x10,%2) is that they are the stress components g;; due to a unit dis-
location b,(x19,x2); therefore we can calculate f;(x1,x2,x10,X2) from Eqs. (27) and (28) by setting
by(x10,X20) = {1,0,0}", {0,1,0}", {0,0,1}", respectively.

2.2. Dislocation solution in a bi-material anisotropic infinite strip

The bi-material infinite strip configuration shown in Fig. 2 consists of two anisotropic homogenous
infinite strips of thickness 4 and H, respectively. The free boundaries are parallel to the material interface.

Xy Xz X2

L (X10Xz0)

M- ;_/_~_ a!__\/ _\/ _\/

\‘ {0'21 T22> 0'23}

Fig. 2. An infinite strip as a distribution of dislocation arrays at the free boundaries.
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The basic idea of obtaining the dislocation solution for the infinite strip is to apply two dislocation arrays
along the free boundaries of the strip respectively. The densities of the dislocation arrays are determined in
such a way that the tractions along the boundary due to a single dislocation and the dislocation arrays
cancel out, therefore the boundaries are traction free.

The dislocation by = {by, b,, b3}T is located at an arbitrary point z = xjq + ixyg. The geometry of a dis-
location in the infinite strip can be decomposed into two configurations; the first one is a single dislocation
located in the bi-material infinite plane. The dashed lines stand for the free boundaries of the infinite strip,
which is supposed to be traction free. Then the traction forces along the dashed line due to the single
dislocation by(x19,x2) can be determined from Eq. (29):

01(;) (x(11)7 h7X107X20) = Fij (X(ll)7 h7x107x20)b0(x107x20)7 (32)

U( <x§2 ) H,xlmxzo) =F; (x§2>, - H,xw,xzo)bo(xlo,xzo), (33)

where ij = 21,22,23.

The second geometry is also the infinite plane with two dislocation arrays located along the supposed-to-
be free boundaries of the infinite strip. In order to satisfy the traction free condition along the boundaries of
the infinite strip, the tractions along the dashed lines in the second geometry should cancel out due to the
single dislocation and the two dislocation arrays.

Assume the two dislocation arrays are distributed from +o0o to —oo, and then the stress components
along the dashed line x, = +/4 due to the two dislocation arrays can be calculated as

+00 +oo
O'E;rraw (xgl), + h) = / F; (x(ln, +h,s, + h)bﬂ,(s7 +h)ds + / F; (xi”, +h,s, — H)b,H(s, —H)ds.
(34)
These should cancel out by the traction forces due to the single dislocation by (xo,x), therefore:
(0 8) = o) (4 +1). 39
Similarly
. +00 +00
af-j‘-lmw (x(lz), —H) = / F,j(x1 ,—H,s, +h)b+h( ,+h)ds+/ Fij(x(f), —H,s, —H)b,H(s, —H)ds.
(36)

Egs. (34) and (36) are sets of singular integral equations. Gaussian quadrature is adopted to solve these
equations numerically, and then the singular integral equations can be reduced to a set of algebraic
equations. More detail derivation of the numerical solution of singular integral equations can be found in
Hills et al. (1996). Egs. (34) and (36) can be united and written in a matrix form:

5
Byl

= %2 %=C
_|_
Byl

N— N

& (D & (D _ o (.0
P F(x]k’+h Sm’+h> E’(xl‘k’+h’sm’ H) <W> 7b+h(sm7+h) — 0'23(x‘,—|—h (37)
P (@ P (@ " by (S, —H) | ® () ’

Fi\xy3 —H Sm,+h)  Fy(x13, —H,spm, —H ~H(Sm> =0y (x4 —H

s 1
o) (<), ~#)
(s) (1D )

1.k

\.l B}
S
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F'<x§1]27 +h Sms +h) F;j (x(IIIZ’ +h Sm _H)

" F; (xlk, Hsm,—i—h) F; (xlk, Hsm,—H)
_El(x§12’+h Sy + > By (x(llyk)q—i—h,sm,—H) |
Fzz<x(lllz’+h Sy h) I:“zz(x(ll’,b—l—h,sm,—H)
Fﬁ;(x(lllz’-kh S, h) 53(x<1f,27+h,sm,—H)
B El(xf,ﬁ, “H, s, h) FQI(xf,l, H, s, H) ’ G8)
Fzz(x(lz,z, —H, S, h) FD(xf,z,fH,sm,fH)
B (x(12127_H sm,—|—h) F; (xf,l,—H,sm,—H)
where
N _

In this case, b;(S,, +h) and b_y(5,, —H) are bounded at both ends of the integral, From Hills et al. (1996),
the integration points 5, the collocation points 7 and the weight coefficients W, can be calculated as

Sm :cosm, (40)
= 005%7 (41)
W,=(1-52)/(N+1). (42)

where k =1,2,3,...,(N+1); m=1,2,3,...,N and N is the number of integration points. More detailed
derivation of the numerlcal quadrature schemes for the solution of smgular integral equations can be found
in Hills et al. (1996). From Eq. (29), we can calculate F,,(x1 & A 5wy +h), Fy (x(l,k7 +h,5,, —H),
F,j(xl,z, —H,5,,+h) and F,](xlk7 —H,5,,—H). by (5,0, )
From Eq. (37), we can obtain the dislocation arrays densities | - Smy
. . . b 4 (Sw, —H)
single dislocation by (x19,x2)- B
For convenieqce, we normalize the results. Denote the dislocation densities along x, = +4 as b, due to
by = {1,0, O}T, b, due to by, = {0, 1,0} and b, 3 due to by; = {0,0, 11} respectively. Similarly, we de-
note the dislocation densities along x, = —H as b_;;; due to by = {1,0 O} b_;» due to by, = {0, 1, 0} and
b_y3 due to by; = {0,0, I}T. Superposing the two elastic fields in Fig. 2, we can obtain the stress field for a
single dislocation by = {b,, b, b3}T located at an arbitrary point Z = x;o + ixy in the infinite strip as

}, which are related to the

0i(x1.%2) = Fy(ox1, 52, X10, X20 )b (x10, %20) (43)
where
F,;(x1,%2,%10,%20) = [f15 (X1, %2, %10, %20 ), f2i7 (%1, X2, X10, X20) , f35; (X1, X2, %10, %20 )], (44)

Sii (1,2, X10, X20) = f1i (X1, %2, %10, %20) + [Fuij (X1, X2, Sy +1), Frij (X1, X2, 8,0, —H )]

<o) -
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The first part of Eq. (45) is the stress components due to a single dislocation by = {b,b,, b3} located at
an arbitrary point z = x|y + ixy in the infinite plane; the second part is the stress components due to the two
free boundaries of the infinite strip. The stress components of the infinite strip due to a single dislocation
can be obtained by superposing the two parts together.

2.3. Mixed-mode stress intensity factors for interface cracks and cracks parallel to the interface in a
bi-material infinite strip

A crack of length 24 in an infinite strip is shown in Fig. 3. The crack is parallel to the interface at a
distance y;. We denote 751, T5; and T»; the external load distributing along the crack surface location. Cracks
can be modelled as a dislocation array with the dislocation densities b(s, y,).

The tractions along the crack surfaces due to the dislocation array are:

+a
O-;;'(xlayt) = / Fij(xlaytas7yt)b(sayt) dS, l] = 21,22723, (46)

which should be equal and opposite to the external loads T3, T, and T»3, in order to satisfy the traction free
condition on the crack surfaces. We use the Gaussian formula to solve Eq. (46); then the singular integral
equation can be transformed to 3(N — 1) linear algebraic equations as

7aF (X1, Viy S 10) (W) Berack (S 1) = =Ty (X1, 1), ij = 21,22,23, (47)

where s,, = as,,, X1, = aty.

Because the dislocation densities at the limits of the integration Eq. (46) are singular, that is to say there
exists singularity at the ends of the crack, the integration points 5s,,, the collocation points 7 and the weight
coefficients W,, are (Huang and Kardomateas, 2001):

5, =cos[z(2m —1)/2N], m=1,2,3,...,N, (48)

7 = cos(nk/N), k=1,23,....N—1, (49)

X2

+h

Y

X1

Fig. 3. A crack in an infinite strip.
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W = 1N, (0)

where N is the number of the integration points we choose on the surfaces of the crack.
In order to satisfy the conditions that the crack surfaces physically come together at both ends, there are
three equations:

N
ZWmBl(gmayt) :()7 l= 17273- (51)
From the Egs. (47)~(51), we can calculate the dislocation densities b(s,,,y,) at these N integration points

along the crack surfaces. The crack tip dislocation densities can be extrapolated from these N integration
points as

N
bi(1,y,) = Mg > b by (5, 30), (52)
m=1
b/(_layt) = ME Zbl(’; )b1(§N+lfnzvyt)7 (53)
m=1
where
. [ 2m—1 . (2m—1
b = sin { AN (2N — 1)}/sm( AN n), (54)
BV = b, My = (55)
£ E=N-

[ =1,2,3 (Hills et al., 1996).
The stress intensity factors at the crack tip can be calculated as (Huang and Kardomateas, 2001):

L

where Re[ | stands for the real part of a complex variable and d(y;) is the Dirac delta function. E,; and d; are
solved from Egs. (25), (26) and (15).

K(x1,y) = [Ku, Ki, K] = +

°[3

3
Re{ mlMa,d(il,yt +001) Y Ey(£1,3)

j=1

3. Results and discussion

First, we can validate the results by assuming a homogeneous material and selecting 4 > H, which
would be essentially a homogeneous anisotropic half plane, since the analytical solution for a dislocation in
a homogenous anisotropic half plane is presented by Atkinson and Eftaxiopoulos (1991). Cross-ply
composite materials are studied in the paper. The elastic material properties for graphite/epoxy were taken
from Huang and Kardomateas (2001). We list the material properties in Table 1. The fiber orientation is
defined as the angle between the x; direction and the laminate’s longitudinal direction.

Table 1
Material properties for graphite/epoxy laminate

E, = 134.45 GPa, E; = 11.03 GPa, Ey = 11.03 GPa
Gy = 5.84 GPa, G,y = 5.84 GPa, Gy = 2.98 GPa
fr = 0.301, 11, = 0.301, jtzy = 0.49

L is the longitudinal direction (fiber direction), 7' the transverse direction, and N the normal direction.
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The convergence of the numerical integration method is very important, therefore, this is our first check.
The results are listed in Table 2. A 45° homogeneous laminate is used in the analysis. In order to check the
results with the analytical solutions obtained by Atkinson and Eftaxiopoulos (1991), we assume one of the
boundaries located at x, = 1.0 x 10%; and the other free boundary located at x, = —1.0. The dislocation
solutions of the infinite strip can be compared with a half plane because # > H. We assume a single dis-
location b = {1,0, 0}T located at zy = 0. We check the stress components at the arbitrary points z = 1, 5, 10.
From Table 2, we can see that the convergence of this method is very satisfactory. The results agree very
well with the analytical solutions.

In order to further check the validity of this method, we assume a bi-material, but we take both # and H
very large, therefore approaching an infinite bi-material plane. The analytical solutions for a single dis-
location in a bi-material anisotropic infinite plane are known (Atkinson and Eftaxiopoulos’s, 1991).
Therefore, in Table 3, we show the comparison of the present solutions with corresponding analytical
results. We assume two free boundaries located at x, = 1.0 x 10°, and x, = —1.0 x 10° respectively. The
dislocation solutions from this limiting case of the infinite strip compare well with the analytical solutions of
the infinite plane. The material is chosen to be 0°/90°. We assume a single dislocation b = {0, 1,0}" located
at zy = 1. We check the stress components of eight points around z,. The number of integration points N is
300. The present results agree also very well with the analytical solutions.

Now we analyze next the mixed-mode stress intensity factors for an infinite strip. We assume the free
boundaries located at x, = 45 and x, = —5 respectively. In order to simplify the results, we normalize the

Table 2
Convergence of stresses for a dislocation in homogeneous infinite strip material: 45°/45°, H =1, h=1.0 x 10°, dislocation
b= {1,0,0}" located at zy = 0

Stresses z=2x; +ixy Number of integration points N Atkinson and
10 50 100 150 200 250 Eftaxiopoulos
(1991)
021 1 1.6251 1.6333 1.6333 1.633 1.6333 1.6333 1.6333
5 0.2732 0.2471 0.2547 0.255 0.255 0.255 0.255
10 0.1009 0.0489 0.0613 0.0644 0.0652 0.0654 0.0655
o 1 —-0.1536 -0.1536 -0.1634 -0.1634 -0.1634 -0.1634 —0.1634
5 0.0214 0.0552 0.0524 0.0521 0.0521 0.0521 0.0521
10 —-0.0293 0.0197 0.0142 0.0109 0.0096 0.0091 0.0089
023 1 -0.959 —-0.9607 -0.9607 -0.9607 -0.9607 -0.9607 -0.9607
5 -0.1854 -0.1706 -0.1717 -0.1717 -0.1717 -0.1717 -0.1717
10 -0.0619 —-0.0427 —0.0467 —-0.0473 —-0.0474 —0.0474 —0.0474
Table 3

Comparison between present method and analytical solution of Atkinson and Eftaxiopoulos (1991) material: 0°/90°,
h=H =1.0x 10, dislocation b = {0,1,0}" located at zy = 1

z=x +1ix, Present Analytical solution
021 022 023 021 022 023

0.0-0.51 —-0.1516 -1.0913 0.0000 -0.1516 -1.0913 0.0000
0.5-0.51 0.0985 -1.9325 0.0000 0.0985 -1.9325 0.0000
1.0-0.51 2.0310 0.0000 0.0000 2.0310 0.0000 0.0000
1.5-0.51 0.0985 1.9325 0.0000 0.0985 1.9325 0.0000
0.0+0.51 0.1005 —1.0658 0.0000 0.1005 —1.0658 0.0000
0.5+0.51 —0.3467 —1.6843 0.0000 —-0.3467 —1.6843 0.0000
1.0+0.51 -2.0310 0.0000 0.0000 -2.0310 0.0000 0.0000

1.5+0.51 —-0.3467 1.6843 0.0000 —-0.3467 1.6843 0.0000
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external loads as {Ty;, Ty, o3} = {1,1,1}". We check the stress intensity factors for the right crack tip.
Fig. 4a shows the mode-I stress intensity factors for the interfacial crack in the infinite strip with the length
of the crack from 0.5 to 5. The stress intensity factors are normalized as K = K/(c+/7a), where o is the
external tensile load.

From the Fig. 4a, we can see that the material combination affects the mode-I stress intensity factor. The
homogenous 0° material has the lowest mode-I stress intensity factor and the 90° material has the highest;
the mode-I stress intensity factors are very close to each other for the homogeneous 45° material and the
45°/-45° bi-material.

The mode mixities y are defined as

Y = tan” (Ku/Ki), Yy = tan~' (K /Kq)

In Fig. 4b and c, we show the mode mixities y; and v, respectively, as a function of the length of the
crack. The mode mixities decrease as the crack length increases. Regarding the mode-II mixity, in general
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Fig. 4. (a) Normalized mode-I stress intensity factor for a crack located at the interface of a bi-material strip. (b) Mode-II mixity for a
crack located at the interface of a bi-material strip. (c) Mode-111 mixity for a crack located at the interface of a bi-material strip.
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Fig. 5. (a) Normalized mode-I stress intensity factor for a crack parallel to the interface in a bi-material strip. (b) Mode-II mixity for a
crack parallel to the interface in a bi-material strip.

the homogeneous materials has lower values compared with bi-material. Moreover, the homogeneous 90°
material has the lowest mode-II mixity compared with the other homogeneous materials (0° and 45°.
Regarding the mode-III mixity, it also decreases as the crack length increases; the 0° homogeneous case
shows the highest mode-III mixity and the 45°/—45° bi-material has in general the lowest mode-III mixity
compared with the other material combinations.

Fig. 5a,b shows the stress intensity factors for cracks parallel to the material interface. The vertical
distance between the crack tip and the interface is y,, shown in Fig. 3. The crack length is 2 and the vertical
distance is from 1.0 to —1.0. The normalized external load is {75, T»,, T23}T ={1,1, l}T. We compare three
anisotropic materials: the 0° and 90° homogeneous materials and the 0°/90° bi-material. From the figures,
we can see that the normalized mode-I stress intensity factor and mode-II mode mixities vary smoothly for
the homogenous materials; however for the bi-material, they change drastically near the interface. When
the crack is far away from the interface, the mode I SIF of the bi-material approaches that of the
homogenous materials. The mode II mode mixities of the homogeneous materials are smaller than that of
the bi-materials. The mode mixity of the interfacial crack is smaller than that of cracks located near the
interface for the bi-material. These trends are similar to the ones observed by Huang and Kardomateas
(2001) for the bi-material half plane.

Finally, it should be mentioned that the dislocation method presented in this paper can be extended to
solve crack problems in bi-material finite-sized geometries, provided the anisotropic material is elastic and
superposition is valid. In this case, the dislocation-based boundary element method (BEM) can be used, as
outlined for the case of a homogeneous body by Huang and Kardomateas (2003).

4. Conclusions

Solutions for the stress intensity factors of cracks in a bi-material anisotropic infinite strip are derived
based on the analytical dislocation approach. The accuracy and convergence are verified by considering the
limits of a half plane and an infinite plane (i.e. for a very large thickness of the strip) and for the homo-
geneous case (i.e. the two materials to be identical), for which solutions already exist. We use the method to
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calculate the stress fields and the stress intensity factors for interfacial cracks and for cracks parallel to the
interface. The following specific conclusions are drawn:

(1) The material combination affects the mode-I stress intensity factor and the mode mixities. The homo-
genous 0° material has the lowest mode-I stress intensity factors and the 90° material has the highest. As
far as the mode mixities, the homogeneous 90° material has the lowest mode-II mixity and the 45°/-45°
bi-material has the lowest mode-III mixity.

(2) For the cracks parallel to the interface, the mode-I and II SIFs change abruptly through the interface;
the mode-II mixity of an interfacial crack is smaller than cracks near the interface.
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